

VERIS Flow Measurement Group

Table of Contents

VERIS Accelabar®	3-4
VERIS Verabar®	5-6
In-Line Vortex Flow Meter	7
AVF Specifications	8
Insertion Vortex Flow Meter	9
AVI Specifications	10
Orifice Plates & Flanges	11-12
Armstrong Venturi Tube Flow Meter	13
Armstrong ASME Flow Nozzle	14
Armstrong PTC-6 ASME Flow Nozzle	15
Armstrong Wedge Flow Meter	16
Armstrong WedgeX Flow Meter	17
VERIS Accelabar® - Quick Model Selection • RFQ	18
VERIS Verabar® - Quick Model Selection • RFQ	19
Vortex Meter • RFQ	20
Differential Pressure Flow Element • RFQ	21

For the best flow measurement solution in any application, turn to Armstrong.

Our state-of-the-art flow measurement technology includes a full line of differential pressure flow elements and vortex meters, as well as VERIS Accelabar®—our proprietary meter that does not require any straight pipe lengths for installation.

Armstrong's flow meters are designed to provide accuracy in measurement, even with the most challenging gases and liquids, to meet the demands of virtually any application in any industry.

With more than a century of in-depth, steam system expertise, Armstrong also provides the most advanced steam flow measurement technology available today.

VERIS Accelabar®

The Unique VERIS Accelabar® Flow Meter

The VERIS Accelabar® is a unique flow meter that produces performance never before attainable in a single flow meter.

The Accelabar® is capable of measuring gases, liquids, or steam at previously unattainable flow rate turndowns—with no straight run requirements.

How the Accelabar® Works

The Accelabar® combines a unique toroidal nozzle design with the VERIS Verabar® averaging Pitot tube.

The nozzle's patented "settling distance" design accelerates, linearizes, and stabilizes the fluid's velocity profile. The Verabar® located within the nozzle then accurately measures that velocity profile.

The nozzle also significantly increases the differential pressure output, thus increasing the operating range (turndown) of the Accelabar.

The Accelabar has a linear flow coefficient with an accuracy of up to $\pm 0.50\%$.

VERIS Verabar® Provides the Accuracy

The proven technology of the Verabar® delivers the accurate measurement within the Accelabar®. The Verabar®'s unique bullet shape, linear flow coefficient, solid one-piece construction, non-clog design, and signal stability make it the only design capable of producing superior performance.

Absolutely No Straight Run Required

The Accelabar® can be used in extremely limited straight run piping configurations. All necessary straight run is integral to the meter. The stabilization and linearization of the velocity profile within the throat of the nozzle eliminates the need for any upstream or downstream pipe runs.

VERIS Accelabar®


Engineering Specifications

- · Liquids, gases, and steam service
- Accuracy up to \pm 0.50% of rate over entire flow range
- Repeatability: ±0.050% over entire flow range
- · Verified flow coefficients
- · Capable of extended turndowns in flowrate
- · No straight piping run requirements
- · Mass or volumetric flow
- 316SS meter body and sensing element
- 1" 12" (25.4mm 304.8mm) in-line body sizes
- Up to ANSI600 standard & ANSI2500 upon request

Ready to Install

The Accelabar® can be furnished as a ready to install flow meter system complete with the primary element, configured transmitter, RTD, and other secondary equipment such as a flow computer or data logger.

An optional RTD can be supplied in a thermowell for density compensation of mass flow rates.

The Accelabar® Advantage vs. Other Flow Meters

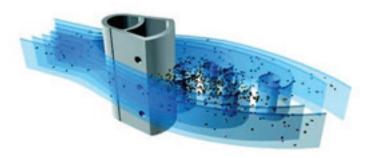
The Accelabar® is able to overcome the limitations of other flow meters in applications that:

- Do not have sufficient fluid velocity to produce a readable signal or generate adequate turndown
- Require ±0.5% accuracy over a large range of flow rates
- Have limited or no straight piping runs before the meter's installation point

Typical performance characteristics of the Accelabar® exceed those of traditional differential pressure, vortex, and other flow meter technologies.

Accelabar® Face to Face Dimensions

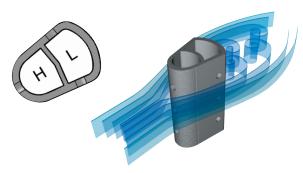
Meter	Face to Face Dimension							
Size	Class 150#	Class 300#	Class 600#	PN10	PN16	PN40	PN63	PN100
1" (DN25)	7.50" (190.5mm)	8.25" (209.6mm)	8.75" (222.3mm)	N/A	N/A	10.15" (257.8mm)	N/A	11.57" (293.9mm)
2"	8.75"	9.38"	10.13"	11.54"	11.54"	11.78"	12.88"	13.35"
(DN50)	(222.3mm)	(238.2mm)	(257.1mm)	(293.2mm)	(293.2mm)	(299.2mm)	(327.2mm)	(339.2mm)
3"	13.78"	14.53"	15.28"	12.31"	12.31"	12.94"	14.04"	14.52"
(DN80)	(350.0mm)	(369.0mm)	(388.1mm)	(312.8mm)	(312.8mm)	(328.8mm)	(356.8mm)	(368.8mm)
4"	15.15"	15.90"	17.65"	13.34"	13.34"	14.36"	15.39"	16.34"
(DN100)	(384.8mm)	(403.9mm)	(448.3mm)	(338.9mm)	(338.9mm)	(364.9mm)	(390.9mm)	(414.9mm)
6"	19.15"	19.90"	21.90"	16.58"	16.58"	18.15"	19.73"	21.30"
(DN150)	(486.4mm)	(505.5mm)	(556.3mm)	(421.1mm)	(421.1mm)	(461.1mm)	(501.1mm)	(541.1mm)
8"	21.40"	22.15"	24.40"	18.38"	18.38"	20.42"	22.16"	23.74"
(DN200)	(543.6mm)	(562.6mm)	(619.7mm)	(466.9mm)	(466.9mm)	(518.9mm)	(562.9mm)	(602.9mm)
10"	23.15"	24.40"	27.65"	20.76"	20.76"	23.51"	25.09"	27.61"
(DN250)	(588.0mm)	(619.8mm)	(702.3mm)	(527.3mm)	(527.3mm)	(597.3mm)	(637.3mm)	(701.3mm)
12"	26.22"	27.47"	29.97"	23.41"	23.41"	26.32"	28.29"	30.65"
(DN300)	(665.9mm)	(697.7mm)	(761.2mm)	(594.6mm)	(594.6mm)	(668.6mm)	(718.6mm)	(778.6mm)


VERIS Verabar®

Accurate and Reliable Technology for Measuring Gas, Liquid, and Steam

Developed from aerospace technology, the VERIS Verabar® averaging pitot flow sensor provides unsurpassed accuracy and reliability. With its solid one-piece construction and bullet shape, the clogresistant Verabar® makes flow measurement reliable and precise.

Superior Signal Stability and Greater Resistance to Clogging



Clogging can occur in low pressure ports located in or near the partial vacuum at the rear of the sensor. The Verabar® design locates the low pressure ports on the sides of the sensor, forward of the fluid separation point and turbulent wake area. This virtually eliminates clogging and produces an extremely stable signal.

Engineering Specifications

- · Liquids, gases, and steam service
- Accuracy up to ± 1.0% of rate over entire flow range (±0.75% if pipe ID is measured)
- Repeatability: ±0.10% over entire flow range
- Verified flow coefficients
- · Mass or volumetric flow output
- 316SS standard sensing element
- · Solid one-piece, bullet shaped design
- Pipe sizes 1.5" (38.1mm) and above
- Up to ANSI2500 upon request
- 5 year performance warranty from date of shipment

Lower Drag and Extended Turndown

The unique sensor shape reduces drag and flow induced vibration while the roughness of the Verabar®'s front surface extends its accuracy and rangeability to lower velocities.

Quality Assurance

Armstrong manufactures its own leak-proof, solid one-piece sensor. The primary goal is to provide the highest quality and most accurate sensor in the industry.

VERIS Verabar® is designed to meet or exceed applicable ANSI and ASME codes. The Verabar is available to meet B31.1, B31.3, B31.8, NACE MR-01-75, etc.

Additional QA capabilities include code welding, hydrostatic and other non-destructive testing.

VERIS Verabar®

The Proof of Verabar® Accuracy

Accurate Flow Coefficients

The true test of a flow measurement device is its ability to repeat its published flow coefficient within its accuracy band. Verabar® has been thoroughly tested at independent flow laboratories using multiple sensor sizes and multiple pipe sizes in both gas and liquid service.

Verabar® Model Selector =

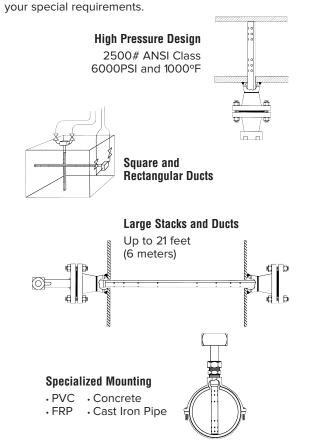
Regular M	Regular Models — (Threaded Components)			
	Model Numb	er	Type of Mounting	
V100	V110	V150	Tube Fitting V100 (Single Support) V110 (Double Support)	
			Spring-Lock V150 (No opposite support required)	

Hot Tap Models — (Threaded or Flanged Components)			
Model N	umber	Type of Mounting	
V200 1 1	V400	Threaded Screw Drive V200	
		Flanged Screw Drive V400	

Flanged Models — (Flanged Components)		
Model Number	Type of Mounting	
V500 V510 V550	Flanged V500 (Single Support) V510 (Double Support)	
	Flanged Spring-Lock V550 (No opposite support required)	

No Calibration Necessary

The development of a verified theoretical model allows the prediction of the Verabar®'s flow coefficients. This eliminates the need for calibration tests to characterize the flow coefficients. The derivation of the theoretical model and test data is published in the Verabar® Flow Test Report.


Verabar® Applications =

The Verabar® offers the widest application range of any flow sensor. It accurately measures gas, liquid and steam.

Gas	Liquid	Steam
Natural Gas	Cooling/Chilled water	Saturated
Compressed Air	Boiler Feed Water	Superheated
Combustion Air	De-Mineralized Water Hydrocarbon Liquids	Main Header Custody Transfer
Hot Air	Cryogenic	Distribution
Blast Furnace Gas	Thermal Transfer Fluids	Energy Studies

Extended Range Applications

The Verabar's versatile design lends itself to a wide range of applications. Contact VERIS application engineering for your special requirements.

In-Line Vortex Flow Meter

Armstrong International is pleased to offer vortex technology for measurement of steam, liquid, and gas flows. All AVF in-line models provide multivariable measurement and mass flow output for applications in industrial and institutional environments.

The flow meter is available from $\frac{1}{2}$ " (15 mm) (DN 15) to 12" (300 mm) (DN 300) meter sizes handling process temps from -330°F (-200°C) to 750°F (400°C) and process connections up to ANSI Class 600 (PN 64).

Multivariable options include temperature, pressure, and velocity measurements for a fully compensated mass flow rate. Output communication is available via analog 4-20ma, HART $^{\text{\tiny{M}}}$ protocol, Modbus, and BACnet $^{\text{\tiny{M}}}$.

Flanged Connection

Features

- · Volumetric or mass flow
- Velocity, temperature, pressure measurements integral to meter body
- · Energy calculation and output available
- 1.5% of rate accuracy or better
- Turndown up to 100:1
- · Push button digital display
- · Remote electronics available
- FM, FMC, ATEX, IECEx Approvals Pending
- Analog, HART™, Modbus, BACnet™ communication

pressure range

AVF Specifications

Performance Specifications

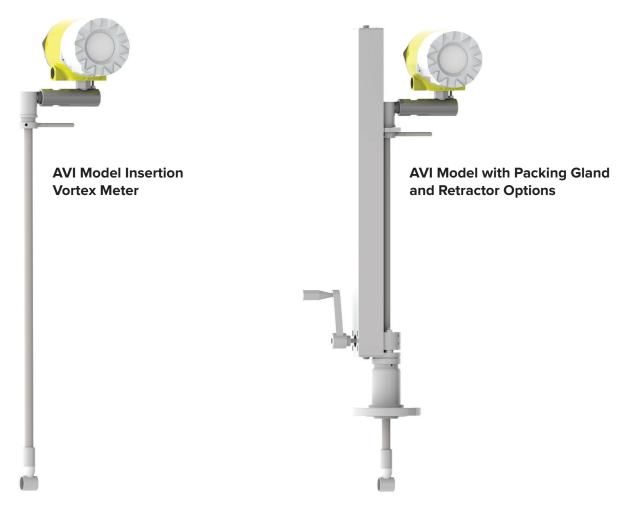
Accuracy		
Variable	Liquids	Gas & Steam
Volumetric Flow Rate	±0.7% of rate	±1.0% of rate
Mass Flow Rate	±1.0 % of rate	±1.5% of rate
Temperature	±2.0°F (±1°C)	±2.0°F (±1°C)
Pressure	±0.3% of full scale	±0.3% of full scale
Density	±0.3% of reading	±0.5% of reading
*Mass flow rate accuracy of gas and steam is based on 50-100% of		

Repeatability		
Mass Flow Rate	±0.2% of rate	
Volumetric Flow Rate	±0.1% of rate	
Temperature	±0.2°F (±0.1°C)	
Pressure	±0.05% of full scale	
Density	±0.1% of reading	
Stability Over 12 Months		
Mass Flow Rate ±0.2% of rate		
Volumetric Flow Rate Negligible		
Temperature ±0.9°F (±0.5°C)		
Pressure ±0.1% of full scale		
Density ±0.1% of reading		
Response Time		
Adjustable from 1 to 100 seconds		

Physical Specifications

Wetted Materials			
Standard 316L Stainless Steel			
Optional	Carbon Steel or Hastelloy C		
	Approvals (Pending)		
FM, FMC	CLASS I, DIV. 1, GROUPS B, C, D CLASS II/III, DIV. 1, GROUPS E, F, G Type 4X and IP66, T6, Ta = -40°C to 60°C		
ATEX	II 2 G Ex d IIB + H2 T6 II 2 D EX tD A21 IP66 T85°C, Ta = -40°C to 60°C		
IECEx	Ex d IIB + H2 T6 Ex tD A21 IP66 T85°C, Ta = -40°C to 60°C		

Power Requirements			
LP Option	12-36 VDC, 25mA, 1W max		
DC Option 12-36 VDC, 300mA, 9W max			
AC Option	100-240 VAC, 50/60Hz line power, 5W		
	Output Signals		
Analog	4-20 mA		
Alarm Solid state relay, 40 VDC			
Totalizer Pulse 50 millisecond pulse, 40 VDC			
Volumetric or LP Mass One analog, one totalizer pulse, HAR			
Multivariable	Up to three analog signals, three alarms, one totalizer pulse, HART™		
Multivariable Modbus or BACnet™ process monitoring			
	Display		
Alphanumeric 2 line x 16 character LCD digital display			
Six pushbuttons for full field configuration			
Pushbuttons can be operated with magnetic wand without removal of enclosure covers			
Display can be mounted in 90° intervals for better viewing			


Insertion Vortex Flow Meter

Introducing the Insertion Vortex Flow Meter

The AVI insertion models provide all the same multivariable measurement and mass flow output features as the AVF in-line model in a robust, welded design.

The AVI is available for pipe sizes 2" (50 mm) (DN 50) and above with either flanged or NPT process connections up to ANSI Class 600 (PN64). Optional retractor tool provides easy hot-tap installation and removal.

Features

- · Compensated mass flow and energy calculations for gases, liquids, and steam
- Hop tap installation does not require shut down or process interruption
- Up to ±1.5% accuracy over a wide turndown in flow rates
- Reliable construction no moving parts
- Analog, HART™, Modbus, and BACnet™ communication
- FM, FMC, ATEX, IECEx Approvals Pending

AVI Specifications

Performance Specifications

Accuracy				
Variable	Liquids	Gas & Steam		
Volumetric Flow Rate	±1.2% of rate	±1.5% of rate		
Mass Flow Rate	±1.5 % of rate	±2.0% of rate		
Temperature	±2.0°F (±1°C)	±2.0°F (±1°C)		
Pressure	±0.3% of full scale	±0.3% of full scale		
Density	±0.3% of reading	±0.5% of reading		

^{*}Mass flow rate accuracy of gas and steam is based on 50-100% of pressure range

Repeatability		
Mass Flow Rate	±0.2% of rate	
Volumetric Flow Rate	±0.1% of rate	
Temperature	±0.2°F (±0.1°C)	
Pressure	±0.05% of full scale	
Density	±0.1% of reading	
Stability Over 12 Months		
Mass Flow Rate ±0.2% of rate		
Volumetric Flow Rate Negligible		
Temperature	±0.9°F (±0.5°C)	
Pressure ±0.1% of full scale		
Density	±0.1% of reading	
Response Time		
Adjustable from 1 to 100 seconds		

Operating Specifications

Pressure Ratings						
Style Connection	Process	Rating Code	Ordering			
	2" (50 mm) MNPT	ANSI 600#	CT8			
Compression Fitting	2" (50 mm) 150# flange	ANSI 150#	CF8150			
Compression Fitting	2" (50 mm) 300# flange	,	CF8300			
	2" (50 mm) 600# flange	ANSI 600#	CF8600			
	2"(50 mm) MNPT	50 psig (3.5 barg)	PT8			
Packing Gland	2" (50 mm) 150# flange	50 psig (3.5 barg)	PF8150			
	2" (50 mm) 300# flange	50 psig (3.5 barg)	PF8300			
	2" (50 mm) MNPT	ANSI 300#	PT8RR			
Packing Gland & Removable Retractor	2" (50 mm) 150# flange	ANSI 150#	PF8150RR			
Tromovable Heriacier	2" (50 mm) 300# flange	ANSI 300#	PF8300RR			
	2" (50 mm) MNPT	ANSI 600#	PT8R			
Packing Gland &	2" (50 mm) 150# flange	ANSI 150#	PF8150R			
Permanent Retractor	2" (50 mm) 300# flange	ANSI 300#	PF8300R			
	2" (50 mm) 600# flange	ANSI 600#	PF8600R			

Orifice Plates & Flanges

Orifice Plate for Flow Measurement

Orifice Plates are the most commonly used differential pressure measurement device and are applicable for measurements in gases, clean liquids, and low velocity steam. Orifice plates allow for relatively easy installation and replacement if necessitated by changes in process parameters or life cycle deterioration.

Armstrong supplies components for a typical orifice meter installation including flange unions, gaskets, orifice plate, and appropriate pressure tap sets.

Design and Manufacturing Standards

- · Manufactured under strict control with high quality in observation with ASME and ISO 9001 certification standards
- · AGA, ISA, ANSI, and API applicable codes
- · Nondestructive testing and special service options available

Product Specifications				
Accuracy	±1.0% to ±5.0%			
Turndown	Up to 10:1 turndown in flow			
Operating Temperature	-400°F to 1250°F (-240°C to 677°C)			
Operating Pressure	Dependent on material of construction			
Line Size	½" and above (12.7mm and above)			
Beta Ratio	0.30 to 0.75			

Square Edge Concentric

Standard bore specification for clean liquid, gas, and steam.

Quadrant Edged

Used in high viscosity, low Reynolds number applications.

Eccentric Bore

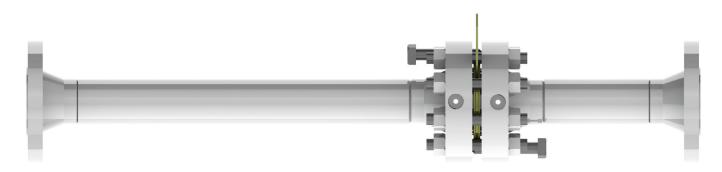
Allows for passage of entrained gas or solids through the bore.

Segmental Bore

For fluids containing large and heavy sediments or solids.

Orifice Plates & Flanges

Orifice Meter Runs


Orifice meter runs are available in accordance with AGA 3 code or any other desired specification for material, size, and capacity. General configuration of orifice meter runs includes:

Instrument Connection $-\frac{1}{2}$ " (12.7mm) pipe coupling and plug are supplied on downstream tube. Additional couplings are available upon request.

End Connection – Ends are supplied beveled for field welding. Threaded, flanged, and mechanical connections are available upon request.

Alignment – Meter runs are provided with alignment holes and studs.

Packing/Crating – Meter runs are crated and shipped fully assembled, ready for installation.

	Orifice Plate and Meter Offerings - Model Numbers					
AOP Universal Orifice Plate						
AOU	Orifice Flange Union, Hardware Optional, Gaskets, No Plate					
AOUP Orifice Flange Union, Hardware Optional, Gaskets, Plate						
AOUPFR Orifice Meter Run, Plate, Flanged In-Line, Union						
AOUPWR	Orifice Meter Run, Plate, Welded In-Line, Union					
AOPTR Orifice Meter Run, Plate, Threaded, Welded In-Line, No Flange Unic						
AOPWR	Orifice Meter Run, Plate, Welded, Welded In-Line, No Flange Union					

Armstrong Venturi Tube Flow Meter

Venturi Tube Flow Meter

Venturi tubes have long been specified and used in a multitude of flow measurement applications. The versatility of measurable fluids, line sizes, and material of construction available to a Venturi tube flow meter has made it a highly recognized differential pressure flow element.

Armstrong offers classical style Venturi tubes – short form and long form – manufactured in accordance with applicable ASME codes. Also available is the Halmi Venturi tube which features superior performance and design with shorter laying lengths and reduced cost.

General Venturi Specifications				
Accuracy	±0.5% up to ±0.25% with calibration			
Beta Ratio	Customizable between 0.30 through 0.75			
Permanent Pressure Loss	5% to 20% dependent on Beta Ratio			
Line Size	3/8" through 144" (9.525mm through 3657.6mm)			
End Connection	Flange, weld, plain end, mechanical joint, or other			
Material of Construction	CS, SS, Duplex SS, Chrome Moly, Aluminum, Hastelloy, Monel, Inconel, Zirconium, Titanium, Tantalum, Cast and Ductile Iron			
Operating Pressure and Temperature	As limited by the materials of construction			

Common Applications

- · Clean gases and liquids
- Potable water
- · High pressure steam
- · Combustion air
- Compressor surge control
- Process measurement (alcohol, ethylene, chlorine, etc.)
- Gas oxygenation
- · Storm sewage
- · Solids-bearing fluids
- · Higher viscosity liquids

Available Models and Configurations

Classical Venturi

- · In-line, insert, and eccentric designs
- Flanged, weld-in, socket weld, butt weld connections
- Meter runs

Bi-Directional Venturi

- · Classical and Halmi designs
- · Cast, fabricated, plastic
- · In-line, insert
- Flanged, weld-in, butt weld

Halmi Venturi

- Fabricated
- In-line, insert
- Flanged, weld-in, socket weld, butt weld, threaded, grout-in, wafer
- Meter runs, static tap, low flow, elbow mount

Plastic Venturi

- Insert
- · Flanged, weld-in, grout-in
- Meter runs, static tap

Armstrong ASME Flow Nozzle

The ASME flow nozzle is a high performance, reliable measurement device, that can be installed in various design and material configurations with conformance to ASME MFC-3M, ASME PTC-6, and ASME PTC 19.5 codes.

General Features						
Line Size	Discharge Coefficient	ASME Design Standards				
2" to 24" (50.8mm to	±2.0% wall tapped nozzle (ASME MFC standard)	ASME PTC-6				
609.6mm)	±1.0% wall tapped nozzle (ASME PTC 19.5 standard)	ASME PTC 19.5				
Beta Ratio	±0.25% throat tapped nozzle (ASME PTC 6 standard)	ASME MFC-3M				
0.20 to 0.80		100 5407				
Nozzle Material	End Connections	ISO-5167				
300 series stainless steel	Flanged or Welded	ASME Fabrication Standards				
Other materials available	Pressure Taps	ASME Section 1				
Piping Requirements	Wall Tap – 1D upstream, 0.5D downstream	ASME B31.1 – power piping				
ASME specified	Throat Tap — 1D upstream, code spec'd downstream	ASME B31.3 – process piping				

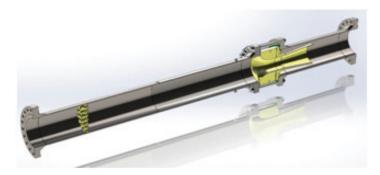
ANZF – Nozzle Flanged

Nozzle designed to be mounted between two flanges. ANZW model available to be welded-in between upstream and downstream pipe sections.

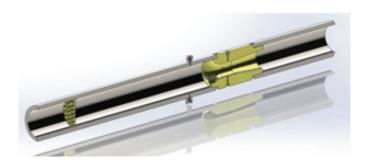
ANZFFR – Flanged Nozzle, Flanged Meter Run

Flow nozzle machined with a holding flange. The nozzle is mounted concentrically with the process flange of two pipe sections.

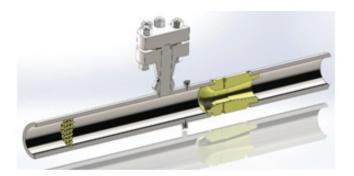
ANZWFR – Welded Nozzle, Welded Meter Run


Flow nozzle installed within a meter run by welding. Used regularly in high pressure and temperature feedwater and steam applications within power plants where flanged mounting is precluded.

Armstrong PTC-6 ASME Flow Nozzle



PTC-6 ASME Flow Nozzle


This flow nozzle provides high accuracy and precision required by ASME PTC-6 in steam turbine testing applications. The assembly consists of a flow conditioner for added accuracy, a diffuser cone for reduced pressure loss, and either a flanged or weld-in flow nozzle. Available in line sizes 4" to 24" with perforated plate or tube bundle flow conditioner, flanged-in or weld-in end connections, and four integrally machined throat pressure taps that are precision-machined and polished. Design standard ASME PTC-6 or ASME PTC 19.5.

Model APTFFR – PTC-6 flanged nozzle in a flanged meter run

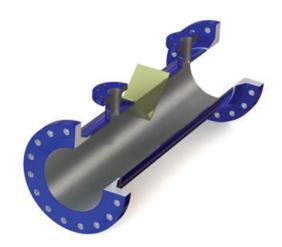
Model APTWWR – PTC-6 welded nozzle in a welded meter run

Model APTWWR – PTC-6 welded nozzle in a welded meter run with inspection port

Flow No	Flow Nozzle Meter Offerings - Model Numbers				
AHN	Halmi Nozzle				
ANZF	Nozzle Flanged				
ANZFFR	Nozzle Flanged, Flanged, Meter Run				
ANZFWR	Nozzle Flanged, Welded, Meter Run				
ANZW	Nozzle Weld-In				
ANZWFR	Nozzle Weld-In, Flanged, Meter Run				
ANZWWR	Nozzle Weld-In, Welded, Meter Run				
APTFFR	PTC-6 Flanged Nozzle, Flanged, Meter Run				
APTFWR	PTC-6 Flanged Nozzle, Welded, Meter Run				
APTWFR	PTC-6 Welded Nozzle, Flanged, Meter Run				
APTWWR	PTC-6 Welded Nozzle, Welded, Meter Run				

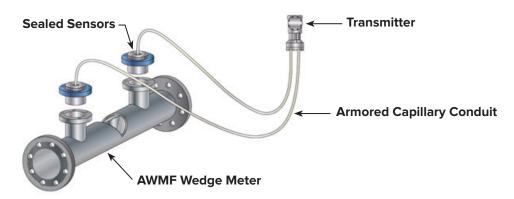
Armstrong Wedge Flow Meter

Accurate Measurement for Challenging Fluids


Armstrong's Wedge Meter imparts all the benefits of differential pressure measurement in difficult fluid applications. The meter can be used with high viscosity fluids, slurries, asphalt, tar-sands, fracking fluids, spent water, sludge, bottoms flow, cement, or other contaminated or abrasive fluids.

Within the cylindrical meter body, an embedded wedge constricts flow and produces a differential pressure. The subsequent measurement from the meter can be accurate to $\pm 0.5\%$ and $\pm 0.2\%$ repeatability. This includes measurements throughout the operating range and low Reynolds numbers.

Wedge & WedgeX Key Features

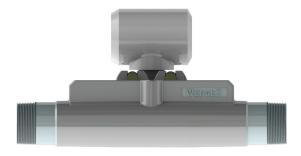

- ±0.5% accuracy, ±0.2% repeatability
- · Available in virtually any line size
- Numerous materials of construction including: 316SS, 304SS, CS, Hastelloy, Monel, and PVC
- · Flanged ends, threaded ends, weld ends, mechanical joint, and other connection types available
- Working pressure limitations per ANSI B16.5

Straight Dun Dagwiyamanta	Pref	erred	Minimum		
Straight Run Requirements	Up	Down	Up	Down	
Concentric expander/reducer	10D	5D	5D	3D	
One elbow	10D	5D	5D	3D	
Two elbows in-plane	10D	5D	5D	3D	
Two elbows out-of-plane	10D	5D	10D	3D	
Partially open gate valve	10D	5D	10D	3D	

Typical Meter Configuration

AWMF Wedge Meter

Armstrong WedgeX Flow Meter



Wedge Meter Benefits in a Compact Design

The Armstrong WedgeX meter utilizes the same technology and benefits inherent with a traditional wedge meter all within a compact, cost effective unit. The direct coupling of the transmitter to the pressure taps virtually eliminates measurement errors caused by the gauge line or plugged taps.

The WedgeX holds the same advantages in accuracy, performance, construction, and fluid capabilities as the standard wedge meter.

	Wedge Meter Model Codes
AWMF	Wedge Meter, Flanged
AWMT	Wedge Meter, Threaded
AWMWFR	Wedge Meter, Wafer
AWMV	Wedge Meter, Victaulic
AWMW	Wedge Meter, Butt Weld
AWX	WedgeX, Studs & O-Rings
AWXT	WedgeX, Threaded
AWXT3V	WedgeX, Threaded, 3-Valve Manifold
AWXTT3V	WedgeX, Threaded, Transmitter, 3-Valve Manifold
AWXTT	WedgeX, Threaded, Transmitter
AWXTHTT	WedgeX, Threaded, High Temp, Transmitter
AWXF	WedgeX, Flanged
AWXF3V	WedgeX, Flanged, 3-Valve Manifold
AWXFT3V	WedgeX, Flanged, Transmitter, 3-Valve Manifold
AWXFT	WedgeX, Flanged, Transmitter
AWXFHTT	WedgeX, Flanged, High Temp, Transmitter
AWXW	WedgeX, Wafer
AWXW3V	WedgeX, Wafer, 3-Valve Manifold
AWXWT3V	WedgeX, Wafer, Transmitter, 3-Valve Manifold
AWXWT	WedgeX, Wafer, Transmitter
AWXWHTT	WedgeX, Wafer, High Temp, Transmitter
AWXV	WedgeX, Victaulic
AWXV3V	WedgeX, Victaulic, 3-Valve Manifold
AWXVT3V	WedgeX, Victaulic, Transmitter, 3-Valve Manifold
AWXVT	WedgeX, Victaulir, Transmitter
AWXVHTT	WedgeX, Victaulic, High Temp, Transmitter

AWXTT WedgeX Meter

Quick Model Selection · RFQ

		r, complete sections 1	_	d email 1	to: veris-sa	ales@ armstron	g internationa	al.com	
•	,	Tag#:				F-mail·			
		Address:					7in·		
		/\ddicoo.				Oity, Otato, 2	ip:		
End User:	lama:		City:				State 7in:		
—————	iailie		_ Oity				_ State, Zip		
1. Ent	ter Pipe	Dimensions			2	Pipe Ori	entation		
	Pipe Size	Sch				(¬		
((ID)	Pipe ID _	Wall	_ Pipe Mat'l		_	\ \	}	V	
	/ Wall					☐ (H) Horiz	ontal](V) Vertica	l
3.	Fluid Nar	ne:	Maximum	No	ormal	Minimum	Units	Special	Instructions
Enter	Flow Rate	9						- - 	
Flow Condi- tions	All	Pressure @ Flow						11	
	Fluids	Temperature @ Flow						11	
	Gas	Specific Gravity, or						11	
		Molecular Weight						1	
	Liquid	Specific Gravity						11	
	Steam	VeraCalc Program can calculate Density from Te			n Tempera	Temperature and Pressure			
(Che AFS Flang 150# 600#	ck one box i ged (ANSI): 300# ABS B	lel Accelabar 31 n each category)	6SS))	Instrume (Select Rer	ent Head Conne note or Direct Mourect Mount rect Mount ransmitter (50°F/232°C Max.)	ections nt Transmitter		ately) unt
	INPT Threa d 2" meter			¥		Transmount		Regular	Parallel
Specify Accelabar Meter Size: 1" (DN25)							Integral		
☐ 4" (DN		12" (DN300)		وجحا	□М	□F	□т	□R	□Р
6. Sel	ect		Manifold)			ıment Valve	
Instrun			P Direc	t Mount			12.5	Remote I	/lount
Valves Manifol		3-Valve			5-Valve		Need	le	Gate
RTD &		-0813 1 300-)-ent		
(Optional)				Soft	Seat	Hard Seat	1/2" NF	PT	1/2" NPT

3-Valve			5-Valve		Needle		Gate
Soft Seat Hard Seat		Hard Seat	Soft Seat Hard Seat		1/2" NPT		1/2" NPT
	☐ F3SC (CS) ☐ F3HC (CS) ☐ F3SS (SS) ☐ F3HS (SS)		☐ F5SC (CS) ☐ F5HC (CS) ☐ F5HS (SS)			NC (CS) NS (SS)	□ C2GC (CS) □ C2GS (SS)
Code RTD in Thermowell					7.	Transmitter	
H1 Standard Temperature 500*F (260*C) May Explosion Resistant							

Code	RID In Thermowell					
□H1 □HT						
	Code	Connection Cable to Transmitter (Direct Mount Only)				
	□XP □N4	Explosion Resistant Moisture and Dust Resistant				
	□ N4	Moisture and Dust Resistant				

Manifold (Optional)

1/2" NPT

Quick Model Selection · RFQ

		plete sections 1 throu	ıgh 7 and email	to: veris-sales@	armstronginternatio	nal.com	
		T "		_	9		
		Tag#:			mail:		
		Fax:			Nit : Otata 7:		
Company:		Address:			Dity, State, Zip:		
<i>End User:</i> Company Name: _		City	:		State, Zip	:	
		•					
Pipe Pipe	- Size ID a	e Mat'l Dim Verab	Height Width ((H)	Pipe or Duc (Check one box) (H) Horizontal (V	V) Vertical	Short Straight Run Consult Factory
3.	Fluid Nar	ne:	Maximum	Normal	Minimum	Units	Special
Enter	Flow Rate	e					Instructions
Flow	All	Pressure @ Flow					
Conditions	Fluids	Temperature @ Flow	,				
	Gas	Specific Gravity, or					
	Gas	Molecular Weight					<u> </u>
	Liquid	Specific Gravity					
	Steam	VeraCalc Program ca	an calculate Den	sity from Tempera	ature and Pressure		
4. Select I (Check one		y v	V200 Hot Tap		V550 Spring V500 V510 Regular	Lock	
5	()						
5. Select							
■ × • ~		trument Connections	· 1			-	E/00000 **
		unt Transmitter (1/2" N	•	-	Mount Transmitter (
Parallel	Regulai		Valve	Transmount	Mass Transmou	unt	Manifold
P	R	D	T Integral	F	Integral HTD	7	Integral
6.		nent Valves (Opt.)	N	lanifolds (Optiona Direct Mount		7. Tr	ansmitter
Select		Remote Mount e Gate	3-Valve	t			
Instrument	Needle C2NC (HC(CS) F5SC	5-Valve (CS) F5HC (CS)	H	
Valves or	C2NS (S			15(SS) F5SS		☐ Veri	s Others

Hard Seat

Soft Seat

Hard Seat


Soft Seat

1/2" NPT

Vortex Meter

		w, complete sections 1		mail to: veris	-sales@ armstro r	ıg internatior	nal.com		
-	-	T #		E					
					E-mail:				
					,,	p			
End User: Company Name: City:				State, Zip:					
1. Ent	er Pipe	Dimensions			2. Pipe Or	ientatio	n		
	Pine Siz	e Sch	 Pipe Mat'l		(Check one box)				
$\left(\left(\begin{array}{c} \downarrow \\ \downarrow D \end{array}\right)\right)$	-								
	Wall	wan	_ 1 lpe Mat1		☐ (H) Hori	0 zontal [☐(V) Vertical		
3.	Fluid Name:		Maximum	Normal	Minimum	Units	Special Instructions		
Enter	Flow Rate								
Flow	All	Pressure @ Flow					71		
Condi-	Fluids	Temperature @ Flow					7		
tions		Specific Gravity, or							
	Gas	Molecular Weight							
	Liquid	Specific Gravity							
	Steam	Vortex Sizing Program	can calculate De	ensity from Ter	sity from Temperature and Pressure				
■ Remote Multivarial ■ Volume ■ Velocity ■ Velocity ■ Energy ■ Energy, Output: ■ One analog ■ One analog ■ One analog ■ Three anal ■ Three anal	s: NEMA 4X NEMA 4X DIE Option tric T, Tempera T, Temper	Enclosure, 50 ft cable Enclosure, 25 ft cable es: Sature Sature, Pressure Sature, External Pressure	or AC power C or AC power DC or AC power DC or AC power IS, DC or AC power ™, DC or AC power	Packing Gland					
12-36VDC,	300mA, 9W n	nax, output options 2, 3, 4, 5, 6, tput options 2, 3, 4, 5, 6, 7	-	 ☐ Three analog, frequency, three alarms, one pulse, BACnet™, DC or AC power Input Power: ☐ 12-36VDC, 25mA, 1W max, loop powered, output option 1 only ☐ 12-36VDC, 300mA, 9W max, output options 2, 3, 4, 5, 6, 7 ☐ 10-240VAC, 5W max, output options 2, 3, 4, 5, 6, 7 					

		w, complete sections 1	_	email to: veris-	sales@ armstro	ng internationa	ll.com		
-	-				E-mail:				
		Fax:							
					City, State, Zip:				
End User: Company N	ame		City:			State Zin:			
			_ Oity:						
	Pipe Size	e Dimensions e Sch Wall			Pipe O (Check one	e box)	(V) Vertical		
3	Fluid Na	mai	Maximum	Normal	Minimum	Units	7		
J.	Flow Ra		waximum	Normai	Wilnimum	Units	Special Instructions		
Enter Flow	All	Pressure @ Flow							
Condi-	Fluids	Temperature @ Flow					1		
tions	0	Specific Gravity, or					1		
	Gas	Molecular Weight					1		
	Liquid	Specific Gravity							
	Steam	Flow Element Sizing P	nent Sizing Program can calculate Density from Temperature and Pressure						
☐ Orifice Plate ☐ Venturi ☐ Flow Nozzle ☐ Wedge Desired Differential Pressure at Max Flow:			Orifice Plate: Concentric Eccentric Quadrant Edged Segmented Bore Tap Type: Flange Radius			Venturi/Flow Nozzle: Flanged Weld-In Insert Flange Rating (if applicable): 150# 300# 600#			
Desired Beta Ratio (if applicable):			☐ Vena Contracta☐ PipeFlange Rating (if applicable):			☐ Other Material of Construction: Throat			
Meter Run: Yes No			☐ 300# ☐ 600#			Body			
Notes:									

Notes

INTELLIGENT SOLUTIONS IN STEAM, AIR AND HOT WATER

Armstrong International

North America • Latin America • India • Europe / Middle East / Africa • China • Pacific Rim armstronginternational.com