

Approximate C_v Required For Freeze Protection of Uninsulated* Water Lines

1) GPM =
$$\frac{A_1A_2(0.5t_w - t_a + 16)}{40.1 d^2(t_w - 32)}$$

- Where: GPM = gallons per minute of water flow
 - A_1 = pipe flow area, ft^2
 - A_2 = exposed pipe surface area, ft^2
 - t_w = temperature of resupply water, °F
 - ta = minimum air temperature, °F
 - d = ID of pipe, ft

2)
$$C_v = \frac{GPM}{\sqrt{\Delta P}}$$
 Where: GPM = gallons per minute of water flow
 $C_v = \text{total required } C_v \text{ of valves}$
 $\Delta P = \text{pressure drop across valves}$
(if valves discharge to atmosphere
 $\Delta P = P_s$ where P_s is supply pressure.)

EXAMPLE: Freeze protect a 125 foot long run of **2**["] pipe when the minimum air temperature is -15 °F. The resupply water is 40 °F minimum, at 60 psig.

From pipe data chart, for 2" schedule 40 pipe: $A_1 = 3.36$ sq. in. = 0.023 ft² $A_2 = 0.622$ ft ²/ft x 125 ft = 77.8 ft² d = 2.067 in. = 0.172 ft

also: t_w = 40 °F t_a =-15°F

$$2)C_{v} = 96_{\sqrt{60}} = 1.24$$

Chose the valve or valves required to give a C_v of 1.24 or more; in this case a single C port ASDV. In some cases, a single valve will suffice; however, the use of several smaller valves will improve reliability.

*For properly insulated lines, use 25% of the $C_{\rm V}$ indicated as an approximation of required $C_{\rm V}.$

9.6